G.W. Taylor Paper 6 Years Ago Today / A Wee Bit of POET History / The Long Road
posted on
Aug 22, 2017 06:33AM
Scientists and engineers from OPEL Technologies affiliate ODIS Inc. (Shelton, CT) and its research and development center located at the University of Connecticut (Storrs, CT) have developed a high-speed, low-power-consumption gallium arsenide (GaAs)- and aluminum gallium arsenide (AlGaAs)-based optical modulator as part of their Planar Optoelectronic Technology (POET) semiconductor integrated photonics platform.1
Unlike the idea of an end-to-end (laser source to detector) integrated architecture using all-silicon photonic devices and silicon optical interconnects, POET aims for the monolithic integration of III-V semiconductor optical and electronic devices on a single (IC) chip. Modulator development was partially funded by the Air Force Research Laboratory (AFRL) for a POET development contract between ODIS and BAE Systems Reed Microelectronics Center (Nashua, NH).
Better OE integration
Most optical ring-resonator modulators use silicon-on-insulator (SOI) waveguides with silicon dioxide (SiO2) cladding layers; unfortunately, power consumption for these devices can be rather high as absorption depends on the plasma effect in the forward-biased diode.
The alternative POET design uses a GaAs/AlGaAs p-i-n quantum-well structure with rectangular waveguide regions to create a blue-shifted modulator that relies on a charge-dependent absorption edge; that is, the absorption change is produced by the blue shift of the band edge in response to the filling of the quantum well (see figure). The device depends critically on the movement of the resonant frequency of the ring during charge injection. The modulation frequency response is determined by the RC circuit response and/or the internal device transit times of the ring structure according to its electrode geometry as well as the optical response of the ring determined by the photon lifetime. Because absorption is across the bandgap and produces electron-hole pairs for every absorbed photon (unlike silicon devices), lower static power levels are needed for control of the quantum well charge. Higher-speed operation is possible because charge removal is facilitated by a high-mobility channel.
The blue-shifted quantum-well structure is also compatible with the fabrication of electronic devices in the same epitaxial structure, and lends itself to easier optical-to-electronic integration with transistor drivers and laser sources.