Re: Rats!,,,a round the lake
in response to
by
posted on
Feb 21, 2011 06:50PM
San Gold Corporation - one of Canada's most exciting new exploration companies and gold producers.
..whats interesting here, is that San knows Vanson ( 2.4 kil ) sits North on the same mine structure as their shaft and Luana sits 4 kil West from Vanson following the Wanipagow fault line. South of Luana running paralel with the Vanson structure the luana structure boxes in the West side of Round Lake with Vanson on the East. Sans Hang Wall running for 6000 ft West of the Rice Mine Headfram boxes in the south West side. So we"er does this leave the Ross Pluton Eruption flow to go, or settle and freeze from the ice age...PS" OLD HOUND, what "s under the Lake ...............................................................................
Class 8: Hydrothermal Veins and Alteration - Notes
Rock alteration simply means changing the mineralogy of the rock. The old minerals grow are replaced by new ones because there has been a change in the conditions. These changes could be changes in temperature, pressure, or chemical conditions or any combination of these. Hydrothermal alteration is a change in the mineralogy as a result of interaction of the rock with hot water fluids, called “hydrothermal fluids”. The fluids carry metals in solution, either from a nearby igneous source, or from leaching out of some nearby rocks. Hydrothermal alteration is a common phenomena in a wide variety of geologic environments, including fault zones and explosive volcanic features.
Hydrothermal fluids cause hydrothermal alteration of rocks by passing hot water fluids through the rocks and changing their composition by adding or removing or redistributing components. Temperatures can range from weakly elevated to boiling. Fluid composition is extremely variable. They may contain various types of gases, salts (briney fluids), water, and metals. The metals are carried as different complexes, thought to involve sulfur and chlorine.
Sources of hydrothermal fluids are not well understood, however, there are three main possibilities that exist. One source can be the magmatic rocks themselves, which exsolve water (called “juvenile” water) during the final stages of cooling. In metamorphic terranes a potential source of the fluids is dehydration reactions which take place during the metamorphic event. With increasing temperature of metamorphism, early, low temperature, hydrous minerals recrystallize into new, higher temperature, anhydrous minerals. The excess water circulates through the surrounding rocks and may scavenge and transport metals to sites where they can be precipitated as ore minerals. Near surface groundwater is another source of water (called “meteoric” water). Evidence from some ore deposits suggests meteoric waters may mix with juvenile or metamorphic waters during late stages of mineralization.
Hydrothermal fluids in plutonic settings are thought to circulate along a large scale convective path. It would be analogous to a pot of boiling water: hottest water rises fastest directly above the heat source, and at the surface changes flow direction to horizontal, and finally downwards along the sides of the pot. In a similar manner, hydrothermal fluids circulate upward and outward from an igneous intrusion at depth. Porous and permeable host rocks (those containing lots of interconnected pore spaces) allow this to happen more readily, for example, in a coarse-grained sandstone. Some types of rocks, like shale or slate, are extremely impermeable. A layer of shale can cause damming or ponding of the hydrothermal fluids, which can lead to a concentration of mineralization behind the impermeable barrier. Fluid migration can be also facilitated by the presence of lots of thin layers .
Hydrothermal fluids also circulate along fractures and faults. A which has a well-developed fracture system may serve as an excellent host rock. Veins form where the fluids flow through larger, open space fractures and precipitate mineralization along the walls of the fracture, eventually filling it completely. Fault zones are excellent places for fluids to circulate and precipitate mineralization. Faulting may develop breccia and gouge, which is often a good candidate for replacement style mineralization. The form of mineralization and alteration associated with faults is highly variable, and may include massive to fine-grained, networks of veinlets, and occasionally vuggy textures in some breccias.
Alteration Zoning
Although mineral zoning patterns are not uncommonly developed around ore deposits, they are not always present or obvious. The patterns can be caused by changes in temperature, fluid chemistry or gas content. The change in parameters over time, such as decreasing temperature of the fluids, can cause overprinting of lower temperature minerals by higher temperature minerals. Structural deformation, such as when a rock shattering or faulting event affects the host rocks, can cause more complexity.
Alteration zoning can occur in many different geometric forms, ranging from concentric shells, to linear forms, to irregular and complex. Porphyry copper deposits are characterized by concentric shell-shaped zones of alteration, which overlap to some extent Figure 8 – 1 A. The core area contains “potassic” alteration in the form of potassium feldspar and biotite. Further outward is a zone of “phyllic” alteration consisting of the assemblage quartz-sericite-pyrite. The outermost zone, called “propylitic”, is characterized by the assemblage quartz-chlorite-carbonate and locally containing epidote, albite or adularia. Epithermal deposits associated with major structures (faults or fractures) have linear zones which parallel the structure. The mineralogy is highly variable, as is the geometry. One example of alteration zoning associated with a volcanic vent is shown in Figure 8 – 1 B. This example indicates an inner zone of silicification forms within a central breccia formation, and an outer zone of propylitic alteration lies adjacent. Sericite is a common alteration mineral formed in zones along fault structures or fault zones in low to moderate temperature settings.
Figure 8 – 1. A. Concentric shell-shaped alteration zones and associated mineralization pattern (after Lowell and Guilbert model). B. Alteration zones associated with epithermal mineralization hosted in alkalic volcanic rocks.
Alteration can be mapped graphically using patterns or colors in much the same way that lithologic units are mapped. The primary characteristics to note are the alteration mineralogy, style and intensity. The mineral assemblages can be coded using patterns or colors. The style of alteration refers to the form, which could be disseminated or massive or anything in between. Another form of alteration is “veinlet-controlled”, which indicates that alteration is restricted to narrow zones adjacent to veinlets. The intensity of alteration refers to how well-developed the alteration is. It could be incipient mineral growth due to weak development, or it may be pervasive throughout the rock, indicating strong development.
Mapping alteration can be used to predict mineralization. In theory, this is done by comparing the results of alteration mapping with known alteration zoning patterns for known mineral deposits. In practice however, the process is seldom so simple because every mineral deposit has some uniqueness to its alteration zoning.
Alteration Types
There are as many alteration types as there minerals. The following types are the most commonly described types:
Zoned vein deposits are deposits which form along fractures and faults as open-space fillings or replacements. They are generally polymetallic. Many have been mined for copper, lead and zinc, although substantial gold and silver credits occur locally. These deposits generally fall in the category of low tonnage, high grade types of deposits. There are two broad categories: 1) vein deposits associated with porphyry base metal deposits, and 2) vein deposits not associated with porphyry base metal deposits.
Zoned vein deposits which are associated with porphyry base metal deposits appear to form at lower temperatures during a later mineralization event. These veins are characterized by a strong sense of zoning from high temperature minerals in proximal (closer to the pluton) portions of the veins, to low temperature minerals in distal (far away) portions of the veins. Proximal portions of the veins are copper-rich and contain sulfide minerals with high metal:sulfur ratios. Distal portions of the same veins are lead-zinc-rich and contain sulfide minerals with lower metal:sulfur ratios. At Butte, Montana, alteration halos adjacent to the veins change dramatically along the length of the vein and with increasing distance from the central porphyry copper-molybdenum deposit (Figure 8 – 2). Proximal portions of the veins are characterized by advanced argillic alteration adjacent to the vein which is superceded outwards by sericitic alteration. Distal portions of the veins are characterized by propylitic alteration adjacent to the vein which gives rise to fresh unaltered rock further away from the vein. Zoned vein deposits which are not associated with porphyry base metal deposits are characterized by having moderate, more uniform temperatures over a larger area. Zoning in these types of vein deposits is usually a function changes in the fugacity of sulfur along the length of the vein.
Figure 8 – 2. Example of proximal and distal zoning of base metal vein deposit of the type associated with porphyry copper/molybdenum deposits.