Aiming to become the global leader in chip-scale photonic solutions by deploying Optical Interposer technology to enable the seamless integration of electronics and photonics for a broad range of vertical market applications

Free
Message: Re: Patent: METHOD OF FORMING AN HERMETIC SEAL ON ELECTRONIC AND OPTOELECTRONIC PACKAGES

Great find Stubbel - This patent seems very extensive.  I’ve selected a few excerpts from the text in the patent where there’s specific reference to the 400G optical engine and to various 400G applications. Let's get some contracts signed, then open floodgates please.

killer66

 

 

Currently, in photonic circuits for which the planar waveguides are not utilized, there is a need to fabricate waveguides as discrete optical circuit elements that are then incorporated with other circuit elements onto a submount assembly to build the circuit. The combination of the innovative planar waveguide structures with a substrate, interposer, or sub-mount assembly is hereinafter referred to as an optical dielectric interposer (ODI). As an alternative to the fabrication of discrete optical circuit or device elements, waveguides can be fabricated directly into the optical dielectric interposer layers using photolithography and etching of the dielectric stack structure. Eliminating the need to add discrete waveguides onto the submount assembly can result in significant cost savings.

 

In an embodiment, the optical dielectric interposer with the planar dielectric waveguide structure formed on the substrate, interposer, or sub-mount assembly is used to enable a low cost platform for advanced optical communication architectures. In yet another embodiment, a 400G optical engine block architecture that benefits from the planar waveguide features of the ODI as described in FIG. 31 and FIG. 32 is fabricated using the ODI. Co-design of the active components in embodiments of the inventive ODI allows for passive placement of the active device components. Additionally, pick-and-place die attachment components and equipment are utilized for one or more of the continuous wave distributed feedback lasers (CW DFB), the p-i-n diode photodetectors (PIN), the electro absorption modulator (EAM) arrays, the wafer level testing with the loop back waveguides, and hermetic sealing of the cap. In FIG. 31, an embodiment of the 400G DR4 Optical engine block architecture is shown. Laser 3154 is shown in a position to deliver optical signals to optical waveguide structure 3156 fabricated on substrate 3110 with waveguide layer 3157.

 

 

In yet other embodiments of the inventive ODI, low cost assembly platform for multi-channel architectures such as the 400GBASE-FR8 and the 400GBASE-LR8 are enabled resulting in mitigated costs of the optics in multi-channel optoelectronic circuits through the use of low cost multiplexers and demultiplexers using photolithographically patterned dielectric gratings directly in the interposer in contrast to the more costly approach of the fabrication and mounting of discrete optical elements into the submount assembly. Additionally, in these architectures, pick-and-place die attach of the CW DFB lasers, PIN devices, and EAM devices are implemented. Additionally, in yet other embodiments, the capability for separating the DFB and EAM devices enables higher yielding array form factors.

 

Share
New Message
Please login to post a reply